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Introduction: The Hughes-Ingold Scheme

In sophomore organic chemistry, you probably encountered two

limiting categories of mechanisms for substitution at aliphatic
centers:

unimolecular (Sy1, Ay+Dy) first-order overall if ky is rate-limiting

K SOH
R-X R@ + x@ R-0OS + HX
K k
-1
bimolecular (Sy2, AyDy) second-order overall
R-X + SOH R-0OS + HX

As we will see by the end of the lecture, this scheme is not
adequate to describe many observations. We will focus our
discussion key experiments that give insight into these
mechanisms, as well as few applications.

The Endocyclic Restriction Test

In Sy2 reactions, the optimal approach angle predicted by
stereoelectronic considerations is 180°. How can we test this
experimentally?

One way to examine this is the endocyclic restriction test (see
Beak Acc Chem Res 1992 25 215-222):

XY Z X YZ
Of course, such a reaction could take place either inter- or
intra-molecularly. How can these be distinguished?

X*-Y* X* Y*-Z X Y*Z
U U N
X Y-Z X* YZ
U NP AN
intramolecular crossover
products products

In a double-labelling experiment, both the molecule and the
migrating group are labelled and mixed with unlabelled
substrate. If the reaction is only intramolecular, then no
singly-labeled crossover products will be formed.

For example, consider this base-promoted methyl transfer:

02 02 ©)
S. SO
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Crossover experiments show that the product is formed through
a purely intermolecular process. This substrate cannot achieve
the orbital overlap needed for reaction. In contrast, this one can:
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Svo base 5o SO3
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intramolecular
product only
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